
On the Takahashi-Umezawa quantization of the external field problem for multi-mass fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1976 J. Phys. A: Math. Gen. 9 659

(http://iopscience.iop.org/0305-4470/9/4/022)

Download details:

IP Address: 171.66.16.88

The article was downloaded on 02/06/2010 at 05:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/9/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


l.Pays.~: Math. Gen.. vol. 9. No. 4. 1976. Printed in Great Britain. 0 1976 

00 the Takahashi-Umezawa quantization of the external 
field problem for multi-mass fields 
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Department of Mathematics, The University of Aston in Birmingham, Gosta Green, 
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Received 24 November 1975 

Abstract. The Takahashi-Umezawa quantization method is applied to certain first-order 
field equations which exhibit a mass spectra and have diagonalizable coefficient matrices. 
The Bhabha equations are a special case. It is shown that in all cases the independent field 
components satisfy the free field commutation rules in the presence of any external field. 
However, such theories have other difficulties. 

IntheTakahashi-Umezawa (Takahashi 1969) method for quantizing interacting fields, 
the Heisenberg field operator T(X) is given by 

m 

9(x)=  $(X/(T)-; d4x’[~(x0-x{), d(a)]A(x-x’)j(x’) (1.1) I-, 
where j ( x )  is the source iii the field equation 

m ) W )  =Ax) 

and 43) is the usual Klein-Gordon divisor defined by 

( U )  d(a)A(d)=U-m’ for unique mass 

(6) d(d)A(d)= (U- m:) €or multi-mass. 
N 

i=l  

fiequantity E ( x ~ - x ~ )  is the sign function 

( 1 . 3 ~ )  

(1.3b) 

and Ah-x’) is a generalization of the Schwinger solution of the Klein-Gordon 
@#ahon which, in the general case of multi-mass fields, is given by (Bdsya 1970) 

Ami(x-x’) 
A(x -x’) = 1 2 2  

i = l  IIj,i(mi - m j )  
(1.4) 

( U - ~ : ) ~ , , ( X - X ’ ) = ~ ‘ ~ ’ ( X  -x’) (1.5) 
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and then 
N n ( O - m ; ) A ( x - ~ ‘ ) = S ( ~ ) ( x - x ’ ) .  

i= l  (1.6) 
The notation x/o.  means that the spacelike surface (T passes through the point x. % 
interaction picture field $(X/(T) then satisfies the free field equations and (anti-) 
commutation rules: 

( 1 .I) [#(x/u>, $(x’/o.)]* = i d(d)A(x - x’). 

Here the adjoint field J(x) is defined by the $ ( x )  = ~( i )$ t (x)v  where ~ ( i )  = -1-1 or-1 in 
order to make the free field energy a positive definite quantity and the ( ~ ~ ( x )  are the field 
operators corresponding to mass states mi. 77 is the usual Hermitian operator satisfying 

where + denotes the Hermitian adjoint. 
Clearly, theories for which 

W X )  = Ilr(x/o) (1.8) 
are the least offensive from the point of view of the Takahashi-Umezawa metha 
although from the many examples of such theories which now exist (Nagpal 1974), the); 
invariably suffer from some problem such as indefiniteness of energy, or charge, or 
non-Hermiticity of the interaction Hamiltonian. If (1.8) holds then the Heisenberg 
field *(x) satisfies the free field (anti-) commutation rules. 

It was originally thought that (1.8) held only for the simplest scalar and spinor fields 
(Takahashi and Umezawa 1964), but Baisya (1970,1971) showed that it extendedto 
various spin-: theories with multiple masses and later Nagpal extended it to the Bhabha 
multi-mass equations (Nagpal 1973,1974). These equations of Bhabha (Bhabha 1945) 
are based on the first-order matrix differential equation 

A(a)$ = (&a” + m)$(x)  = 0 (1.9) 

in which # ( x )  carries a reducible representation of Zp (proper Lorentz group) @’en by 
the reduction of an irreducible representation of the Lorentz group in five dimensions. 
The basic feature of these equations is that the matrix Po satisfies the minimal equation 

(p,’+$(po’+$, . . . (&+S2) = 0 (1.10) 

for half-odd integer spin S,  and 
(1.11) po@g+1)(&+4). . . (&+S*)=O 

for integer spin S. Nagpal shows that in both cases the dynamically independentfie1’ 
satisfy (1.8). 

Nagpal also discusses the propagation of the Bhabha fields in an external . 1975) 
tromagnetic field and shows that they propagate causally. Amar and Dome { 
considered the propagation of general theories of type (1.9) in an electroW2neacfie1d 
and showed that a sufficient condition for causal propagation is that Bo satisfies the 
minimal equation 

N (1.12) 
P L ~  (P;+A?)‘’=O r=Oor1. 

i = l  
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mdistinguishing feature of such theories is that the sub-block of Bo corresponding to 
the Er0 eigenvalues is diagonalizable. The case r > 1 characterizes what Amar and 
m ~ o  mil type (c) constraints (Nagpal calls them secondary constraints) in the theory. 

is only these types of constraint which can lead to causality problems. Capri and 
Shma]y (1973) have given an example of a causal spin-1 theory which contains type 
(cl constraints and in fact satisfies a minimal equation + 1) = 0. So theories with 
type (c) constraints cannot be ruled out on the grounds of causality. 

It is well known that theories characterized by (1.12) have vanishing charge or 
energy for those mass states f m/Ai for which ri > 1, and so the most general form for 
the equation of PO for non-trivial theories is 

(1.13) 

i.e. the sub-blocks of PO corresponding to non-zero eigenvalues are diagonalizable 
(Speer 1969). For some theories r is related to the maximum spin contained in the 
theory, but in general it is a matter of choice (Glass 1971). Effectively, Amar and 
mzzio’s results show that all theories for which Po is diagonalizable are causal in the 
presence of an external electromagnetic field. The object of this note is to show that 
(1.8) also extends to such theories-i.e. it holds for all theories for which Po satisfies 

N 

p~ n (&+A:)=o r=Oor 1 (1.14) 

as minimal equation, with a slight modification in the case r = 1 to single out the 
independent fields. The Bhabha equations, corresponding to (1. lo), (1.1 1) are particu- 
lar examples. Thus we generalize Nagpal’s results and also derive them in a simpler 
way. 

The essential idea we use in the case r = 0 of (1.14) is that d(a) does not contain 
sufficiently high-order derivatives to contribute to the right-hand side of (1.1). In the 
case r =  1 of (1.14) the projection operator Po on to the null space of Po occurs as the 
termof highest-order derivative in d(d), and it is only this term which can contribute to 
heintegral on the right-hand side of (1.1). 

i = l  

2. form of d(8)  

i1.3(b)) 

fie general form for the Klein-Gordon divisor was first given by Umezawa and 
vmnti (1956), for both cases ( a )  and ( b )  in (1.3). Explicity the expression is, for 

~ ( d ) = f f o + f f w d w + f f ~ l w 2 d w 1 d ~ + .  . .+awlw2...wLakah. - . dwL (2.1) 
where 

(-l)N 
(Yo=- rI m: m i = l  

- ffoPw a, =- 
m 
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- _ -  a P 1 P Z P 3 W ~ P S  

m ff PI ... P S  

etc, where mi = m/Ai, giving the relation between the non-zero eigenvalues of p0 and 
the mass states. 

We now consider separately the two minimal equations for Po, given in (1.14). 

2.1. r = O  

Po satisfies 
N 

i = l  

as the minimal equation. It is easy to verlfy that in this case we can take the 
Klein-Gordon divisor to be 

(2.31 d(a) = (yo + aPaP + f f H l p 2 a P 1 a k  + . . .  CY^^,..^^^-^^ Pi a k .  . . a ” 2 ~ - 1  

with the coefficients Q I ~ ~ . . . ~ ~  as given in (2.1). Then (1.3(b)) becomes a consequenceof 
the covariant form of (2.2): 

N 

n ( ( p .  a)2+,ifo)=o. 
i = l  

Actually, all we need to know in this case is that the highest order of derivative in d@) is 
2N- 1, where 2N is the number of (distinct) mass-charge states. 

2.2. r =  1 

Po satisfies 

(2.4) 

as the minimal equation. This case is a little more complicated, because of the singular 
nature of PO, but substituting (2.1) in (1.3(b)) we obtain for the highest-orderdedvanve 
in d(a)n(a): 

 CY^^...^$^^+^^^^ . . . aPLaPLC1. 

Now either L + l = 2 N  and (1.3(b)) gives 

~Pl...P#PL+laP1apL+i = (0)’” 

aPl...Pr+lPPL+,aP1 . . . aPLaP=+l = 0 

o r L + 1 = 2 N + l a n d  
(2.5) 
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(aote hat the identity here refers to the derivatives aP1 . . . a”~+l) .  Since the first 
*oility would imply a minimal equation €or p, of even degree, the case (2.4) must P @fiepod to the second possibility-the first in fact corresponds to the case (2.2). 

nus(2.5) is the covariant form of (2.41, as is directly verified from (2.1). The important 
thowever is that, on putting all indices pi in (2.5) equal to zero we get Poh 

(2.6) Boa00 ... 0 = 0 

ad comparing with (2.4) this means 
N 
1. 

a00 ... o=  K n (&+A:) 
i=l 

hother words, (yo... o is proprotional to the projection operator on to the null space of 
lo. Thus, for theories satisfying (2.4), d(a) can be written in the form 

1 
m 

d(a)=ao+aPaP +. . . + ~ P l . . . P z N - l a P 1 . .  . aP2N-1+-P(p,a) 

where P(P, a) is the covariant form of the projection operator: 

(- ON 2 
= - (PplPpz-  &PlPz)(PPzPw- Azgp3w4) . . . I I i A  : 

( ~ P ~ ~ - ~ ~ p Z N - A ~ g ~ Z N - I ~ Z ~ ~ ) a P 1  . ’ ‘ (2.10) 

neimportant point about (2.8) is the occurrence of the projection operator p(P, 8) as 
hetenn Of highest-order derivative. Strictly, P(p ,  a) is only a projection operator on 
hemass shell, but this does not affect the arguments used. 
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where 
K+ = (V2 - m2)1/2  + n . a K- = (v2 - m2)l”- n . a 

and (a- m2)A(x -x‘) = 0. np is a timelike unit vector. However, it is more convenient 
to have the right-hand side as a power Series in the mass m. We find, obGom 
notation: 

&(X0-xb), apl .  . . a”l]A(x -x‘) 

where a = (V2- m2)ll2, b = n . a 

The terms in this sum for which j + q is even vanish and only those terms for which j and 
4 have different parity remain. Then j -  q - 1 is even and only even powers of 
U = (V2 - m2)l/’ occur. The highest power present is a ’-’ if 1 is even and a’-3 if I is odd. 
So the right-hand side of (3.1) is a polynomial in m2 of degree (I-2)/2 if I is even and 
(1-3) /2  if 1 is odd. We therefore write 

% E ( x ~ - x ~ ) ,  8”. . . a”’]A(x -x’) 

(3.3) 

the bj and cj being independent of m2.  We will only need to know b( , -z) /z  edicitlYand 
this is easily read off from the j = I- 1, r = 0 term of (3.2) as: 

. . . n”’. (1 -2 ) /Znr1  (3.4) 
b(l-2)/2 = (- 1 )  

4. Quantization of the interacting field 

Again we treat the cases (2.2) and (2.4) separately. 

4.1. r = 0 

(2.3) gives the expression for d(a) in this case and substituting this we find 
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#e(xo-xb), d(a)lA(x - X I )  

1 2N-1 

1 = 1  
= C ( ~ , , . . . ~ , A ~ ( x o - x ; ) ) ,  . . . d”’]A(x-x’)  

ZN-1 ~ E ( X ~ - - X ~ ) ,  awl . . .  ay^^^(^-^^) 
ni+Xm’- m;) = ( Y P I  ... PI c 

1=1 i = l  

from (1.4). We now use (3.3) to rewrite this in the form 

(4.1) 

where the Ak are independent of the i summation, although they do contain the masses 
mi in a symmetric fashion (these occur in the (Y~~ . . .~ , ,  which do not enter the i 
summation). Finally, we use the algebraic identities (Nagpal 1974): 

m: f 2 = O  CY =O, 2, .  . . (2N-4) 
i = l  ni+,(mi - mf) 

(4.2) 

tonote that (4.1) vanishes. So for these theories, satisfying (2.2), we obtain (1.8). The 
interaction commutation rules are the same as the free field ones. This is quite 
independent of the source j ( x ) .  

4.2. r = 1 

In this case d(d) is given by (2.8): 

1 2N-1 
4 8 )  =(Yo+ 1 ( Y P l . . . P f 3 ~ 1  . . .a”‘ +--P(P, a). 

1=1 m 
Substituting in $ E ( X ~ - X ; ) ) ,  d (a ) ]A(x  - X I ) ,  the first two terms vanish exactly as in (4.1) 
and we obtain 

~ I - x ; ) ) ,  d(d)]A(x - x ’ )  

1 
m i = l  

; [ E ( X ~ - X ~ ) ,  8”. . . a k “ ] A m i ( ~ - ~ ’ )  
- 2  rIigi(m; - m i )  = --P(P, J g )  x c 

obvious notation 

1 N ma 
m j = O  i s l  IIizj(mi -mi)  

=-p(p, J g )  x1  bj(n,d) 2 2 s‘4’(x-x‘)  
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x( - l)N-lnpl . . . n"NS'4)(X -x') 

from (3.4) 

=- (- l)"-lP(p, n)S'4'(x -x'). 
m 

Substituting in (1.1) we obtain: 

(-1)N-l O0 

?(x) = Q(x/a) - - d4x'P(P, i ~ ) S ' ~ ' ( x  -x')j(x') m I, 

which generalizes the result preceeding (2.16) of Nagpal (1974). We now use tbe 
operator I - P ( P ,  n) to project out the independent field components, and using 

obtain 

So the independent field components satisfy (1.8) for theories satisfying (2.4). Again, 
this result is independent of the source j(x). 

5. Conclusion 

We have shown that for all theories in which Po is diagonalizable, (1.8) holds for be 
independent field components. This is independent of the source of the external field. 
Thus, as Amar and Dozzio found in the case of the causality problem, only W (C) 
constraints can lead to problems in the external field quantization due to norm? 
dependent terms occurring in (1.1). However, just as in the causality problem, heres 
no obvious reason to suggest that type (c) constraints will always mean a violation Of 

(1.81, or if it does that this still precludes a 'consistent' external field quantization. If 
W e  (c) constraints do exist, so that r > 1 in (1.13), then it is no longer possible to define 
a good projection operator PO onto the null space of Po and 1 -PO cannot be used to 
isolate the independent components of the field. n e  Jordan block of zero &envd? 
Of PO is not diagonal and the analysis of the constraints becomes very diffCdt, butthrs 
Still does not mean that the independent field components will violate (1.8). 

Further, the apparent simplicity of the theories considered here, free of 
constraints, is illusory, at least for higher spin. Such theories exhibit other problem:: 
is well known that for spin greater than one, theories with Po diagonalizable ''? 
invariant under the complete Lorentz group (Yp + reflections) and which are 
from a red Lagrangian, cannot satisfy the correct definiteness propertieson 
charge without an indefinite metric (Gel'fand et a1 1963). Also, it has been 

Id 

ObSefld 
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bat &e interaction Hamiltonian H(x)  = &x)j(x) ,  obtained from the equation 

[$(x/u>, H(x’/o; n)] = i d(d)A(x -x ’ ) j (x ’ )  

667 

e free field commutation rules (1.7) and the fact (1.8) for the theories with Bo irsiog 
diagonalizable, is in general non-Hermitian (Nagpal 1973). H(x)  can be made Hermi- 
tiawing an indefinite metric but this can upset the definiteness of the energy or charge 
pisya 1970). Munczek (1967) has proposed a way round this problem by using a 
variant of the Lee-Yang &limiting formalism for the massive vector-boson field, but 

res& are not conclusive in this respect. However, despite their difficulties, 
with Po diagonalizable have received a great deal of attention recently, because 

of fie absence of type (c) constraints and the simplicity of their mass spectra (Iverson 
1971). Also Hurley (1974) has proposed a formalism which may resolve the above 
problems and make it possible to incorporate such theories into a consistent scheme. 
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